第16回ミリ波サブミリ波受信機ワークショップ

超伝導信号処理回路と その天文分野への応用 March 8, 2016

横浜国立大学工学研究院 <u>山梨裕希</u>,小箱紗希,小野智裕, 坂下洋介,吉川信行

超伝導回路技術と、天文分野応用 から見たその特徴

天文分野に使える(かもしれない)回路 乱数生成回路 FFTプロセッサ 自己相関器

超伝導回路技術と、天文分野応用 から見たその特徴

天文分野に使える(かもしれない)回路 乱数生成回路 FFTプロセッサ 自己相関器

超伝導巨視的量子コヒーレンス 2e(2e)巨視的な系なのに、ひとつの 波動関数による状態記述

VNU

超伝導回路におけるビット

位相の量子化条件: 1周当たり2πの整数倍

超伝導リング中の磁東: 「磁束量子」の整数倍になる

 $\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ Wb}$

<u>磁束量子の有無</u>でのビット表現

SFQ信号伝搬回路

SFQ論理ゲートの例

DFF (Delay Flip-Flop)

SYNU

電力と遅延の他デバイスとの比較

YNU

Courtesy of Prof. Tanaka (Nagoya Univ.)

1ゲートの出力が得られれば 即時に次のデータを入力可

□□> 超高スループットのディジタル回路

出力のフィードバックを待つ必要

└──〉スループットの低下

SFQ回路の得意な計算

排他的論理和ゲート (Exclusive-OR)

真理值表			
Α	В	OUT	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

 $a \oplus b = a \cdot b + a \cdot b$

SFQ回路は天文分野向き?

天文分野の解析回路:
データは1次元1方向 (フィードバック不要)
排他的論理和計算が得意

(1ゲートでの相関計算可)

天文分野は
 冷却を厭わない

SFQ回路の有望な応用先

超伝導回路技術と、天文分野応用 から見たその特徴

天文分野に使える(かもしれない)回路 <u>乱数生成回路</u> FFTプロセッサ 自己相関器

乱数:周期、相関のない数値列 シミュレーションや計測器の校正に利用

疑似乱数

- 計算アルゴリズム使用
- 周期あり
- 汎用計算機で生成可
- ランダムな自然現象
 を利用
- 周期なし
- 専用素子が必要

SFQ疑似乱数生成器(専用回路)

50 GHz疑似乱数生成 Zhou et al., IEEE TAS 11 (2001) 617.

複数出力を用いた生成レートの向上 (3 outputs/clockまで実証) 武藤他, IEICE秋季大会, 2015年9月.

SFQ物理乱数生成器

Simulated Autocorrelation 20 versus Generation Rate

AIST 2.5-kA/cm² Nb standard process 2

回路作製プロセス 産総研Nbアドバンストプロセス (AIST-ADP)

超伝導配線層:Nb 線間絶縁層:SiO₂,抵抗層:Mo

AIST-ADP

Data storage loop

RVVIL

最小線幅:1μm

最小接合面積: 1 μm×1 μm

30 µm

Recorded random number: 3.2 Mbit

Statistical Test Result

Statistical Test	p-value	Result
Frequency: Monobit	0.122325	ОК
Block Frequency	0.739918	ОК
Cumulative Sums-Forward	0.035174	ОК
Cumulative Sums-Reverse	0.122325	ОК
Runs	0.17912	OK
Spectral DFT	0.911413	OK
Non-Overlapping Templates	0.066882	ок
Overlapping Templates	0.035174	ОК
Universal		
Approximate Entropy	0.739918	ОК
Random Excursions		
Random Excursions Variant		
Linear Complexity	0.213309	ОК
Serial	0.739918	OK

NIST 800-22: 乱数検定ツールの代表

13/16のテストに合格

3つのテストは行えず (取得データ不足)

超伝導回路技術と、天文分野応用 から見たその特徴

天文分野に使える(かもしれない)回路 乱数生成回路 FFTプロセッサ 自己相関器

z-plane

Nサンプル点フーリエ変換の計算量: DFT: O(N²) FFT: O(NlogN)

FFTプロセッサの構成

SFQ FFTプロセッサ

29

- Estimated calculation time of 32-bit SFQ FFT processors for 1024-point FFT: 6.2 µs at 50 GHz
- Calculation time of FFT processors using CMOS FPGA: 62.95 μs

4-bitバタフライユニット

バタフライユニット測定の例

 $\begin{array}{l} \underline{\text{Data pattern 1}}\\ \text{Re}[x(0)] = 0111, \ \text{Im}[x(0)] = 1101,\\ \text{Re}[x(1)] = 1011, \ \text{Im}[x(1)] = 1111,\\ \text{Re}[W] = 1101, \ \text{Im}[W] = 1001 \end{array}$

Re[X(0)] = 100100,Re[X(1)] = 010100 $\begin{array}{l} \underline{\text{Data pattern 2}} \\ \text{Re}[x(0)] = 0110, \ \text{Im}[x(0)] = 1010, \\ \text{Re}[x(1)] = 1011, \ \text{Im}[x(1)] = 1100, \\ \text{Re}[W] = 1001, \ \text{Im}[W] = 1011, \end{array}$

Re[X(0)] = 100111,Re[X(1)] = 001001

Sakashita et al., IEEE TAS 25 (2015) 1301205.

1.50 mm

Process: AIST 10 kA/cm² Nb **Advanced Process** Number of JJs: 726 Bias Current: 87.3 mA

- Used for 4-bit 8-point FFT
- Bias Margin: 80%~125%

@50 GHz

■ 59.5 GHz動作

4ビット回転因子メモリ

CMOS FFT Processorとの比較³⁵

	Tech- nology	Bit-width	Power [mW]	Clock Frequency [GHz]	Energy per operation (×10 ⁻¹² J)
[4]	0.11 µm	16	2.17	0.100	21.70
This study	1 μm Nb (J _C = 10 kA/cm²)	16	4.86	1.56	3.115

エネルギー効率で1桁の優位性 (低電力SFQ回路を使えば2-3桁優位)

[4] M. Fonsenca et al., "Design of Pipelined Butterflies from Radix-2 FFT with Decimation in Time Algorithm Using Efficient Adder Compressors", IEEE Latin American Symposium on Circuit and Systems (LASCAS) 2011.

超伝導回路技術と、天文分野応用 から見たその特徴

天文分野に使える(かもしれない)回路 乱数生成回路 FFTプロセッサ 自己相関器

自己相関器

時間間隔nτ離れたデータ間の相関の計算

ミリ波分光用SFQ自己相関器 SISミキサからの出力の自己相関を 低温環境下で計算

Vernik et al., IEEE TAS 15 (2005) 419. ADCの工夫で増幅器は不要?

38

1ビット自己相関器

Clock signal interval : τ

1-bit 自己相関器設計結果

複数ビットADコンバータ

複数ビットADコンバータに 対応できる自己相関器の設計

41

2-bit ADコンバータ用 自己相関器の設計

• The Karnaugh map of C_1 • The Karnaugh map of C_0

$\begin{array}{c} y_1 y_0 \\ x_1 x_0 \end{array}$	00	01	11	10
00	0	0	1	1
01	0	0	1	0
11	1	1	0	0
10	1	0	0	0

$\begin{array}{c} & \mathcal{Y}_1 \mathcal{Y}_0 \\ x_1 x_0 \end{array}$	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0

$$C_{1} = x_{1}\overline{y_{1}}\overline{y_{0}} + \overline{x_{1}}y_{1}y_{0} + x_{1}x_{0}\overline{y_{1}} + \overline{x_{1}}\overline{x_{0}}y_{1}$$

= $x_{1}\overline{y_{1}}\left(x_{0} + \overline{y_{0}}\right) + \overline{x_{1}}y_{1}\left(\overline{x_{0}} + y_{0}\right)$
$$C_{0} = x_{0} \oplus y_{0}$$

2-bit ADコンバータ用 自己相関器の設計 _{Clk}

$$C_{1} = x_{1}\overline{y_{1}}\overline{y_{0}} + \overline{x_{1}}y_{1}y_{0} + x_{1}x_{0}\overline{y_{1}} + \overline{x_{1}}\overline{x_{0}}y_{1}$$
$$= x_{1}\overline{y_{1}}\left(x_{0} + \overline{y_{0}}\right) + \overline{x_{1}}y_{1}\left(\overline{x_{0}} + y_{0}\right)$$
$$C_{0} = x_{0} \oplus y_{0}$$

- : The calculation part of C_1
- \square : The calculation part of C_0

JJ数: 527 面積: 0.60 mm×0.45 mm

フィードバックなし □◇ 多ビット化による速度低下なし

解析用回路まとめ

データは整数型、4ビット(16 LSB)
バタフライユニット50 GHz動作実証
今後はFFTプロセッサ全体の実証へ

50 GHzを超える動作が可能
 多ビット入力にも対応可

課題は拡張性と実装

天文分野応用への課題

いずれの回路でも1000ビットや 1000チャネルを超えるときつい

室温回路との配線数制限 帯域は10 Gbps/channel程度

解析回路の高機能化
 符号分割多重化で対応
 〇 YNU

- 天文用解析回路はSFQ回路の 有望な応用先
 - ◆ 1方向のデータフロー
 - ◆ 排他的論理和ゲートの有効利用
- 超伝導回路による解析回路例
 - ◆ (乱数生成器)
 - ◆ FFTプロセッサ
 - ◆ 自己相関器
- 拡張性、実装が課題
 仕様に応じた専用設計で対応
 入出力IFは頑張るしかない

超伝導?

48

 \mathbf{k} - $\Delta \mathbf{k}$

k

-**k**

-**k** + ∆**k**

波数∆k

2電子が対(クーパー対)を構成 Bosonとして振る舞う

超伝導: クーパー対のBose-Einstein凝縮

巨視的量子効果

$$\left[\theta,n\right] = -i$$

巨視的な系においても、 状態が1つの波動関数で 記述可能

$$\Phi = n\Phi_0$$

$$\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ Wb}$$

ジョセフソン接合(JJ)

$$I = I_C \sin \theta$$
$$V = \frac{\hbar}{2e} \frac{d\theta}{dt}$$

1962, B.D. Josephson

超伝導位相が電気信号 として直接見える素子

電気信号で位相の制御

