第16回ミリ波サブミリ波受信機ワークショップ

超伝導信号処理回路とその天文分野への応用

March 8, 2016

横浜国立大学工学研究院 山梨裕希, 小箱紗希, 小野智裕, 坂下洋介, 吉川信行

内容

- 超伝導回路技術と、天文分野応用 から見たその特徴
- 天文分野に使える(かもしれない)回路
 - ◆ 乱数生成回路
 - ◆ FFTプロセッサ
 - ◆ 自己相関器

内容

- 超伝導回路技術と、天文分野応用 から見たその特徴
- 天文分野に使える(かもしれない)回路
 - ◆ 乱数生成回路
 - ◆ FFTプロセッサ
 - ◆ 自己相関器

超伝導巨視的量子コヒーレンス

巨視的な系なのに、ひとつの波動関数による状態記述

超伝導回路におけるビット

位相の量子化条件: 1周当たり2πの整数倍

超伝導リング中の磁束: 「磁束量子」の整数倍になる

 $\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ Wb}$

磁束量子の有無でのビット表現

超伝導回路におけるゲート

$$I = I_C \sin \theta$$

$$V = \frac{\hbar}{2e} \frac{d\theta}{dt}$$

ジョセフソン接合(JJ): Φ_0 にとってのゲート

$$\overline{V} = f\Phi_0$$

f: Φ₀の通過数/秒

Single Flux Quantum (SFQ)回路 電源電流

Likharev, IEEE Trans Appl. Supercond. 1 (1991)

SFQ伝搬(信号伝搬)の原理

SFQ信号伝搬回路

SFQ論理ゲートの例

DFF (Delay Flip-Flop)

電力と遅延の他デバイスとの比較

Courtesy of Prof. Tanaka (Nagoya Univ.)

SFQ回路の得意な回路

1ゲートの出力が得られれば即時に次のデータを入力可

□⇒超高スループットのディジタル回路

SFQ回路の苦手な回路

SFQ回路の得意な計算

排他的論理和ゲート (Exclusive-OR)

真理值表

_A	В	OUT	
0	0	0	
0	1	1	
1	0	1	
1	1	0	

$$a \oplus b = \overline{a} \cdot b + a \cdot \overline{b}$$

SFQ回路は天文分野向き?

天文分野の解析回路:

- データは1次元1方向 (フィードバック不要)
- 排他的論理和計算が得意 (1ゲートでの相関計算可)
- 天文分野は 冷却を厭わない

SFQ回路の有望な応用先

内容

- 超伝導回路技術と、天文分野応用から見たその特徴
- 天文分野に使える(かもしれない)回路
 - ◆ <u>乱数生成回路</u>
 - ◆ FFTプロセッサ
 - ◆ 自己相関器

乱数の種類

乱数:周期、相関のない数値列 シミュレーションや計測器の校正に利用

疑似乱数

- 計算アルゴリズム使用
- 周期あり
- 汎用計算機で生成可

物理乱数

- ランダムな自然現象 を利用
- 周期なし
- 専用素子が必要

50 GHz疑似乱数生成 Zhou et al., IEEE TAS 11 (2001) 617.

量子電圧ノイズ源に使用 Yamada et al., Physica C 518 (2015) 85.

複数出力を用いた生成レートの向上 (3 outputs/clockまで実証)

武藤他, IEICE秋季大会, 2015年9月.

SFQ物理乱数生成器

 $I_C = 216 \,\mu \overline{A}$, Rs = 1.73 Ω , L = 2.52 pH

Yamanashi et al., IEEE TAS 19 (2009) 630.

Simulation Result

Generation rate > 20 Gbps

SRL 2.5 kA/cm² Nb Standard process

Simulated Autocorrelation versus Generation Rate

Maximum generation rate: ~25 Gbps (2.5 kA/cm² Nb Standard Process)

High-Speed Test of RNG

回路作製プロセス

産総研Nbアドバンストプロセス (AIST-ADP)

超伝導配線層:Nb

線間絶緣層:SiO2,抵抗層:Mo

AIST-ADP

Data storage loop

最小線幅:1 μm

最小接合面積: 1 μm×1 μm

AIST-ADPで試作した Delay Flip-Flop (DFF)の写真

Recorded random number: 3.2 Mbit

Statistical Test Result

Statistical Test	p-value	Result
Frequency: Monobit	0.122325	ОК
Block Frequency	0.739918	ОК
Cumulative Sums-Forward	0.035174	ОК
Cumulative Sums-Reverse	0.122325	ОК
Runs	0.17912	ОК
Spectral DFT	0.911413	ОК
Non-Overlapping Templates	0.066882	ок
Overlapping Templates	0.035174	ОК
Universal		
Approximate Entropy	0.739918	ОК
Random Excursions		
Random Excursions Variant		
Linear Complexity	0.213309	ОК
Serial	0.739918	ОК

NIST 800-22: 乱数検定ツールの代表

13/16のテストに合格

3つのテストは行えず(取得データ不足)

課題は動作安定化

内容

- 超伝導回路技術と、天文分野応用から見たその特徴
- 天文分野に使える(かもしれない)回路
 - ◆ 乱数生成回路
 - ◆ FFTプロセッサ
 - ◆ 自己相関器

FFT

Discrete Fourier Transform (DFT)

$$X(k) = \sum_{n=0}^{N-1} x(n) \exp(-j\frac{2n\pi k}{N}) \qquad k = 0,1,...,N-1$$

$$W_N^{nk} = \exp(-j\frac{2\pi nk}{N}) = \cos(-j\frac{2\pi nk}{N}) + j\sin(-j\frac{2\pi nk}{N})$$

Twiddle factor

$$W_4^2 = -W_4^0$$

$$W_4^3 = -W_4^1$$

Twiddle factor in z-plane

Nサンプル点フーリエ変換の計算量:

DFT: $O(N^2)$

FFT: O(NlogN)

FFTプロセッサの構成

8-point FFT

FFTプロセッサ:

- ■バタフライユニット
- データシャッフリング
- 回転因子ROM

Butterfly operation

SFQ FFTプロセッサ

- Estimated calculation time of 32-bit SFQ FFT processors for 1024-point FFT: 6.2 μs at 50 GHz
- Calculation time of FFT processors using CMOS FPGA: 62.95 μs

4-bitバタフライユニット

Process:

AIST 10 kA/cm² Nb Advanced Process

Number of JJs: 8349

Bias Current: 1.06 A

Target Frequency: 50 GHz

バタフライユニット測定の例

Data pattern 1

Re[x(0)] = 0111, Im[x(0)] = 1101, Re[x(1)] = 1011, Im[x(1)] = 1111,Re[W] = 1101, Im[W] = 1001

Re[X(0)] = 100100, Re[X(1)] = 010100

Data pattern 2

Re[x(0)] = 0110, Im[x(0)] = 1010, Re[x(1)] = 1011, Im[x(1)] = 1100,Re[W] = 1001, Im[W] = 1011,

Re[X(0)] = 100111,Re[X(1)] = 001001

動作マージンの周波数依存

51.6 GHzの動作を確認

Sakashita et al., IEEE TAS 25 (2015) 1301205.

Data Shuffling Circuit

1.50 mm

Process:

AIST 10 kA/cm² Nb

Advanced Process

Number of JJs: 726

Bias Current: 87.3 mA

- Used for 4-bit 8-point FFT
- Bias Margin: 80%~125% @50 GHz
- 59.5 GHz動作

4ビット回転因子メモリ

0.90

Process: AIST 10 kA/cm² Nb Advanced Process

Number of JJs: 1028

Bias Current: 109.7 mA

■ For 4-bit 8-point FFT

■ Bias Margin: 80%~125%

@50 GHz

■ 51.5 GHz動作実証

CMOS FFT Processorとの比較³⁵

	Tech- nology	Bit-width	Power [mW]	Clock Frequency [GHz]	Energy per operation (×10 ⁻¹² J)
[4]	0.11 µm	16	2.17	0.100	21.70
This study	$1 \mu m Nb$ $(J_C = 10 kA/cm^2)$	16	4.86	1.56	3.115

エネルギー効率で1桁の優位性 (低電力SFQ回路を使えば2-3桁優位)

[4] M. Fonsenca et al., "Design of Pipelined Butterflies from Radix-2 FFT with Decimation in Time Algorithm Using Efficient Adder Compressors", IEEE Latin American Symposium on Circuit and Systems (LASCAS) 2011.

内容

- 超伝導回路技術と、天文分野応用から見たその特徴
- 天文分野に使える(かもしれない)回路
 - ◆ 乱数生成回路
 - ◆ FFTプロセッサ
 - ◆ 自己相関器

自己相関器

時間間隔nで離れたデータ間の相関の計算

ミリ波分光用SFQ自己相関器

SISミキサからの出力の自己相関を 低温環境下で計算

Vernik et al., IEEE TAS 15 (2005) 419.

ADCの工夫で増幅器は不要?

16チャネル 自己相関器

1ビット自己相関器

Clock signal interval : au

D_n: Delay Flip-Flop

1-bit 自己相関器設計結果

ゼロスキュー クロッキング: 高速だが 回路規模大

ブランチ クロッキング: 速度は劣るが 回路規模小

複数ビットADコンバータ

1-bit A/D converter

複数ビットADコンバータに 対応できる自己相関器の設計

2-bit ADコンバータ用 自己相関器の設計

• The Karnaugh map of C_1 • The Karnaugh map of C_0

$x_1 x_0$	00	01	11	10
00	0	0	1	1
01	0	0	1	0
11	1	1	0	0
10	1	0	0	0

$x_1 x_0$	00	01	11	10
00	0	1	1	0
01	1	0	0	1
11	1	0	0	1
10	0	1	1	0

$$C_{1} = x_{1} \overline{y_{1}} \overline{y_{0}} + \overline{x_{1}} y_{1} y_{0} + x_{1} x_{0} \overline{y_{1}} + \overline{x_{1}} \overline{x_{0}} y_{1}$$

$$= x_{1} \overline{y_{1}} \left(x_{0} + \overline{y_{0}} \right) + \overline{x_{1}} y_{1} \left(\overline{x_{0}} + y_{0} \right)$$

$$C_0 = x_0 \oplus y_0$$

2-bit ADコンバータ用 自己相関器の設計。

$$C_{1} = x_{1} \overline{y_{1}} \overline{y_{0}} + \overline{x_{1}} y_{1} y_{0} + x_{1} x_{0} \overline{y_{1}} + \overline{x_{1}} x_{0} y_{1}$$

$$= x_{1} \overline{y_{1}} \left(x_{0} + \overline{y_{0}} \right) + \overline{x_{1}} y_{1} \left(\overline{x_{0}} + y_{0} \right)$$

$$C_{0} = x_{0} \oplus y_{0}$$

lacksquare : The calculation part of $C_{\scriptscriptstyle 1}$

 $lue{}$: The calculation part of C_0

JJ数: 527

面積: 0.60 mm×0.45 mm

フィードバックなし

□〉多ビット化による速度低下なし

解析用回路まとめ

FFTプロセッサ

- データは整数型、4ビット(16 LSB)
- バタフライユニット50 GHz動作実証
- 今後はFFTプロセッサ全体の実証へ

自己相関器

- 50 GHzを超える動作が可能
- 多ビット入力にも対応可

課題は拡張性と実装

天文分野応用への課題

いずれの回路でも1000ビットや 1000チャネルを超えるときつい

回路作製プロセスの発展 (高J_C化での高速化も) NbN回路の開発

室温回路との配線数制限 帯域は10 Gbps/channel程度

→ 解析回路の高機能化 → 符号分割多重化で対応

全体まとめ

- 天文用解析回路はSFQ回路の 有望な応用先
 - ◆ 1方向のデータフロー
 - ◆ 排他的論理和ゲートの有効利用
- 超伝導回路による解析回路例
 - ◆ (乱数生成器)
 - ◆ FFTプロセッサ
 - ◆ 自己相関器
- 拡張性、実装が課題
 - ◆ 仕様に応じた専用設計で対応
 - ◆ 入出力IFは頑張るしかない

超伝導?

2電子が対(クーパー対)を構成 Bosonとして振る舞う

超伝導:

クーパー対のBose-Einstein凝縮

巨視的量子効果

巨視的な系においても、 状態が1つの波動関数で 記述可能

超伝導リング中の磁束: 「磁束量子」の整数倍になる

$$\Phi_0 = h/2e = 2.07 \times 10^{-15} \text{ Wb}$$

ジョセフソン接合(JJ)

$$I = I_C \sin \theta$$

$$V = \frac{\hbar}{2e} \frac{d\theta}{dt}$$

1962, B.D. Josephson

超伝導位相が電気信号として直接見える素子

電気信号で位相の制御

