

ミリ波・テラヘルツ波無線通信用 InP HEMT技術

<u>高橋 剛1,2</u>、牧山剛三1,2、遠藤 聡1、佐藤 優1,2、 中舍安宏^{1,2}、川野陽一^{1,2}、芝 祥一^{1,2}、原 直紀^{1,2} 1富士通研究所、2富士通

■ 背景 ■ HEMTの概要 ■ HEMTの基本 InP HEMT ■ InP HEMT技術 ■ デバイス構造 ■ RF&雑音特性 ■ 低温特性 ■ IC特性 ■ 今後の展望 ■ まとめ

■ 背景 ■ HEMTの概要 ■ HEMTの基本 ■ InP HEMT ■ InP HEMT技術 ■ デバイス構造 ■ RF& 雑音特性 ■ 低温特性 ■ IC特性 ■ 今後の展望 ■ まとめ

ミリ波・テラヘルツ波の応用 イメージセンサ スペクトル・アナライザ

■ 大容量無線通信システム

94 GHz

LNAs and detectors for Imaging M. Sato et.al., APMC2007.

110-140 GHz

Mixers for spectrum analyzers

S. Shiba et.al., IMaRC2014.

240-260 GHz

LNAs and detectors for receiver MMICs

Y.Kawano et.al., CSICS 2013.

ミリ波・テラヘルツ波受信用IC

■ 受信用ICの構成

FUJITSU

• 275GHzより高い周波数が未分配

HEMTの基本

■ 1979年に富士通研究所(三村 博士)が発明 ■ GaAs HEMT

■最初の応用は電波天文用途(1985年~)

■ 22~24GHz, NF~1dB (25K)、 C₆Hの発見

- 衛星放送が普及(1987年~、1989年ベルリンの壁崩壊の原因)
- GPS受信機、車載レーダ、携帯電話基地局等への応用拡大

■ GaAs HEMTからInP HEMT, GaN HEMTへ発展

(株)富士通研究所「やさしい技術講座」より http://www.fujitsu.com/jp/labs/resources/tech/techguide/

HEMTの構造

■ High Electron Mobility Transistor (HEMT) ■ 高電子移動度トランジスタ

InP HEMTとは?

III-V族化合物半導体の物性

Material	Lattice Constant (Å)	Bandgap (eV)	Dielectric Constant	Electron Effective Mass	Hole Effective Mass	Electron Mobility (cm²/Vs)	Hole Mobility (cm²/Vs)
Si	5.43	1.12	11.9	0.19	0.16	1,450	500
GaAs	5.65	1.42	12.9	0.063	0.07	8,000	400
AIAs	5.66	2.36	10.1	0.11	0.22	180	-
InP	5.87	1.35	12.6	0.077	0.64	4,600	150
InAs	6.05	0.36	15.1	0.023	0.40	33,000	460
GaSb	6.01	0.72	15.7	0.042	0.40	5,000	850
InSb	6.48	0.17	16.8	0.015	0.40	80,000	1,250
GaN	3.19/5.18 ^c	3.44	8.9	0.20	0.8	1,200	200
AIN	3.11/4.98 ^c	6.1	8.5	0.40	3.53	300	14

InAs, InSbの移動度が高いが、安定な高抵抗基板が無い

バンドギャップと格子定数

InP HEMT: InP基板に格子整合したInAIAs/InGaAsヘテロ接合

InP HEMTのメリット

HEMT基本構造の違い

InP HEMT構造

雑音特性の改善

多層配線後の特性劣化改善が課題

空洞構造の作製手順

空洞構造の作製手順

空洞構造の作製手順

Takahashi et al., *IEEE Trans. Electron Devices*, vol. 59, no. 8, pp. 2136–2141, 2012.

ゲート寄生容量

カットオフ周波数

■ Cold-In法(Cold-Source法)

最小雜音指数

雑音指数のベンチマーク

InP HEMTの特性

■L_g : 75 nm

Cavity structure

■ f_T / f_{max}: 320 GHz / 660 GHz

■NF_{min}:0.71 dB @94 GHz, 300K

InP HEMTの低温特性(I_d-V_d)

InP HEMTの低温特性 (g_m)

InP HEMTの低温特性 (f_T, f_{max})

100K以下では特性が飽和傾向

InP HEMTの基幹ミリ波通信応用

W带 低雜音增幅器

ミリ波イメージング(パッシブ)の例

94GHz

RT

APMC2007, Sato et al.

フリップチップ実装InP HEMT増幅器

The first demonstration beyond 200 GHz

Only 2-dB decrease before/after flip-chip mounting

300GHz帯増幅器

■ まとめ

■ 指累 ■ HEMTの概要 ■ HEMTの基本 ■ InP HEMT ■ InP HEMT技術 ■ デバイス構造 ■ RF& 雑音特性 ■ 低温特性 ■ IC特性 ■ 今後の展望

Copyright 2016 FUJITSU LABORATORIES LTD.

今後の展望

■動作周波数向上

■f_{max}向上

■500~600GHz帯 増幅器の可能性

■低雑音化

■MMIC初段のゲート長短縮 75nm→30nm級

■高感度化

■検波器の集積化

■用途

■テラヘルツ帯大容量無線通信(データの瞬時転送)

■イメージセンサ(高解像度)

■電波天文(ミリ波帯マルチビーム化)

まとめ

- InP HEMTに空洞構造を適用することで、RF特性 およびミリ波帯の雑音特性を改善した。
- InP HEMTは低温においてRF特性が向上するため、NFのさらなる改善が期待できる。
- 空洞構造を適用したInP HEMTを用いて300GHz 帯のテラヘルツICを実現した。

謝辞

本研究の一部は、総務省委託研究「超高周波搬送波による数十 ギガビット無線伝送技術の研究開発」の一環として実施した。

FUJTSU

shaping tomorrow with you