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1. 収差を考える必要性
❖近年の宇宙電波観測の計画・提案 
✓観測波長 
• より短い波長へ (200 um 程度まで) 
✓掃天観測が中心 
• 南極 10 m 望遠鏡 (筑波大) 
• Cerro Chajnantor Atacama Telescope 
(Cornell Univ. など) 
• Large Submillimeter　　　　　　　　　
Telescope (国立天文台など) 

✓視野 1° ないしはそれ以上が　　　　　　　　　
要求されている

2南極 10 m 望遠鏡



2. 電波望遠鏡の特徴と指標
❖望遠鏡の役割 
✓天体からの電波を集める 
✓検出器まで導く 
✓検出する 

❖光学的な特徴 
✓波動性がみえる 
• 回折 (周波数の関数) を評価する必要がある 
✓検出器に感度の方向依存性がある 
• 特定の方向の電磁波を検出する 

❖開口能率 
✓天体からの電場と検出器の感度の関数
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Tsuzuki+, JATIS, 1(2), 025002 (2015)

a new concept “off-axial optical systems” as an extended con-
cept of coaxial optical systems and its aberration analytical
method. Fujishiro et al.20 adopted Araki’s concept and achieved
an optical design with a wide FoV, small f-number and compact
size. We used this method to introduce xy polynomial free-form
mirrors into our reimaging optics. Surfaces of those free-form
mirrors are expressed in Eq. (1) on a local coordinate.

The design steps of reimaging optics are shown in the fol-
lowing list and Fig. 2:

1. Start with one surface with power.

2. Increment the number of surfaces with power one by
one. (This will lead to the solution with the minimum
number of optical elements.)

3. Determine the rough optical configuration. That is,
taking into consideration both feasible regions for
relay optics and the number of the surfaces determined
in Step 2, arrange those surfaces so that the entire relay

optics fits within the feasible region and the reflection
angles are as small as possible.

4. Design the optical power distribution in the paraxial
on-axis system that corresponds to the optical confi-
guration determined in Step 2 so that the optics
satisfies the specifications such as a wide FoV, high
Strehl ratio, telecentric, and optical components size
restriction.

5. Convert those surfaces with power into free-form mir-
rors using Araki’s method, add rotation angles, and set
the FoV to 0 deg.

6. Widen the FoV gradually and then optimize the optical
parameters (i.e., coefficients of the free-form mirrors
and lens, rotation angle and distances between the
components) to satisfy the specifications. The order
of freeform polynomials starts with a small value
(in our case, two) and may be gradually increased if
necessary. The lens type and material may also be
changed if necessary.

7. In these steps, when you cannot achieve a solution to
satisfy all specifications in spite of using the maximum
orders of freeform polynomials mirrors (the maximum
order is set to six in our case), the possibility of the
solution is judged to be small and the process returns
to Step 2.

4 Result
We obtained a design solution that provided a 1.0-deg FoV at
850 GHz. Figures 3 and 4 show the ray diagrams of the tele-
scope and the reimaging optics, respectively. To achieve the
wide FoV and compact configuration, we adopted four free-
form (xy polynomial) reflective mirrors at room temperature
and a single alumina lens at cryogenic temperature. These
four free-form mirrors make the rays from the telescope pass
into the aperture stop with the minimum configuration to satisfy
the strict specifications of a wide FoV, high Strehl ratio, and size

Fig. 4 Enlarged views of Fig. 3: (a) an overall view of reimaging optics and (b) an enclosed view of the
cryostat. The diameter of the telescope focal plane is 1000 mm. The diameters of M2, M3, M4, and M5
free-form mirrors are 1868, 1871, 1826, and 1062 mm, respectively. Also the diameters of the alumina
lens and vacuum window are 530 and 400 mm, respectively. The overall size of this reimaging optics is
reasonably compact (1.6 m × 3.3 m × 2.6 m). The pupil is not sharp because of the less strict require-
ment for antenna-coupled microwave kinetic inductance detectors.

Fig. 3 Ray diagram of telescope and reimaging optics. The diameter
of primary mirror, secondary mirror, and third mirror is 10, 1.5, and
1.57 m, respectively. This telescope design has a FoV of 1 deg at
850 GHz.

Journal of Astronomical Telescopes, Instruments, and Systems 025002-5 Apr–Jun 2015 • Vol. 1(2)

Tsuzuki et al.: Design of wide-field Nasmyth optical system for a submillimeter camera
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3. 開口能率を振り返る
❖開口能率の本質は何か？ 
✓入射側のspillover 
✓天体からの電場と検出
器感度の一致具合 
• coupling 
✓受信機側のspillover 

❖ 値を評価する場所 
✓入射瞳と射出瞳 

❖瞳？ 
✓光学系の性質を　　　　　　　　　　　　　　　　　　
決める重要な場所
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❖重要な概念・・・瞳 
✓絞りの像と定義される

4. 瞳
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❖重要な概念・・・瞳 
✓絞りの像と定義される 

• 物体側から見た瞳 (入口)・・・入射瞳 
• 像側から見た瞳 (出口)・・・射出瞳
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4. 瞳



❖重要な概念・・・瞳 
✓絞りの像と定義される 

• 物体側から見た瞳 (入口)・・・入射瞳 
• 像側から見た瞳 (出口)・・・射出瞳 

➡通過する光線 (電磁波) を規定する
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4. 瞳



❖入射瞳の前、射出瞳の後ろ 
✓自由空間の伝搬として扱う 

❖入射瞳と射出瞳の間 
✓屈折/反射が起こる、収差が発生する

8

自由空間

自由空間

光学系 
収差

← spilloverとcouplingを 
　　評価

4. 瞳



５. 開口能率の計算
❖計算方法 (今田D論, Imada & Nagai in prep.) 
✓信号に乗った波面の歪みの記述 @ 射出瞳 

!

!

!

!

✓Zernike (環状) 多項式 Znm で展開 
• 単位円内で定義される正規直交多項式
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Equation (17) shows that the direction of an incident plane wave
and the position of the reference spherical wave center (i.e., de-
tector position) determine the coupling efficiency via the beam
pattern P̃n(l,m; rref). Finally, the aperture efficiency can be ex-
pressed as a function of p̂ and rref ,

ηA( p̂; rref) = ηsp,ex(rref)
λ2P̃n(l,m; rref)
Ap,enΩA(rref)

. (18)

In a case where P̃n = 1, i.e., p̂ = p̂0, Equation (18) reduces

ηA( p̂0; rref) = ηsp,ex(rref)
λ2

Ap,enΩA(rref)
. (19)

Note that ηsp,en = 1 because of assuming the incident wave
to be a plane wave. Equation (19) is different from the well-
known form ηA = λ2/Ap,enΩA described in much literature (e.g.,
Rohlfs & Wilson 2004, chap. 5), which is a special case where
ηsp,ex = 1 and P̃n(l,m; rref) = 1.

2.6.2. Evaluation at the exit pupil

We next expand the field reaching the exit pupil from the en-
trance pupil and the imaginary field by the detector sensitivity
with the normalized Zernike annular polynomials (Appendix A).
The reason we adopt the Zernike polynomials is that they are one
of the orthogonal polynomials in a finite and annular domain
and that it is more reasonable to utilize them than orthogonal
polynomials defined in an infinite domain such as the Laguerre-
Gaussian beams.

Differences of the fields at the exit pupil from the reference
spherical wave can be expanded as forms such as

Eex( p̂; ρ) = C exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

m,n

Cn
m( p̂; rref)Zn

m(ρ; ε), (20)

Edet(ρ; r0) = C′ exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

p,q

Dp
q(rref ; r0; w0)Zq

p(ρ; ε), (21)

Eex and Edet represent the field at the exit pupil by the incident
wave and detector sensitivity, respectively. C and C′ are a con-
stant. The detector sensitivity is assumed to be expand with the
Laguerre-Gaussian beams at a plane other than the exit pupil,
so that the coefficients Dp

q depends on the beam waist size of
the Laguerre-Gaussian beams, w0, the position of which can be
reflected by rref . By Equations (20) and (21), the coupling effi-
ciency can be written as follows:

ηcoup =

∣∣∣∣
∑

m,n
∑

p,q δnpδmqCn
m( p̂; rref)

(
Dp

q(rref ; r0; w0)
)∗∣∣∣∣

2

∑
n,m |Cn

m( p̂; rref)|2
∑

p,q

∣∣∣Dp
q(rref ; r0; w0)

∣∣∣2
, (22)

where δnp is the Kronecker’s delta. Note that the coefficients Cn
m

hold information of the distorted wavefront by aberrations.

3. Relation between the aberration coefficients and
aperture efficiency

Calculation of the coefficients Cn
m and Dp

q is put into practice
and response of Equation (22) can be observed if the Seidel aber-
rations exist.

Table 1. The aberration coefficients.

A1
1( p̂; rref), B1

1( p̂; rref) tip, tilt, distortion
A2

0( p̂; rref) defocus, curvature of field
A2

2( p̂; rref), B2
2( p̂; rref) astigmatism

A3
1( p̂; rref), B3

1( p̂; rref) coma
A4

0( p̂; rref) spherical

3.1. Calculation of the coefficients Cn
m( p̂; rref)

Our aim in this subsection is that the wavefront error W( p̂; ρ; rref)
is expanded with the Zernike annular polynomials corresponding
to the Seidel aberrations. In other words, we use the polynomials
Zn

m which meet n + m ≤ 4, n − |m| ≥ 0, and n − |m| is even and
obtain

W( p̂; ρ; rref) = A1
1( p̂; rref)Z1

1(ρ; ε) + B1
1( p̂; rref)Z1

−1(ρ; ε)

+ A2
0( p̂; rref)Z2

0(ρ; ε) + A2
2( p̂; rref)Z2

2(ρ; ε)

+ B2
2( p̂; rref)Z2

−2(ρ; ε) + A3
1( p̂; rref)Z3

1(ρ; ε)

+ B3
1( p̂; rref)Z3

−1(ρ; ε) + A4
0( p̂; rref)Z4

0(ρ; ε). (23)

The meanings of each coefficient An
m and Bn

m are summarized
in Table 1. The field at the exit pupil can be expressed with terms
up to the second order W2

Eex( p̂; ρ) ≃ Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
(
1 + jkW − k2

2
W2

)

=
Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

n,m

Cn
m( p̂; rref)Zn

m(ρ; rref). (24)

The coefficients Cn
m as a function of An

m and Bn
m are shown in

Appendix B.

3.2. Calculation of the coefficients Dp
q(rref ; r0; w0)

The field distribution of the detector sensitivity is ideally ex-
pected to be a fundamental Gaussian beam. We expand with the
Zernike annular polynomials the distribution given as a superpo-
sition of the Laguerre-Gaussian beams in this subsection.

Before calculating the coefficients Dp
q, we have a brief look

at the propagation of beams. The incident wave from the direc-
tion p̂ is converted into a nearly spherical wave centered at rref .
It is assumed that the position of the beam waist r0 is on the line
connecting the center of the exit pupil and the point rref , along
which the Laguerre-Gaussian beams propagate. On this assump-
tion, the term exp[ jk( f /zref)Rp,exρ sinΘ cos(ψ − Φ)] can be ig-
nored. It means that the case we should consider is the on-axis
case only, i.e., the incident wave comes from the normal to the
pupil and the beam waist is located on the z axis. It is hereafter
assumed that r0 ∝ rref and that the beam waist is located at the
point r0 = (0, 0, z0) with the beam size of w0.

3.2.1. Expansion of the Laguerre-Gaussian beam with the
Zernike polynomials

Each mode of the Laguerre-Gaussian beams specified by the in-
dex p′ and q′ can be expanded by the Zernike polynomials within

Article number, page 4 of 13
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❖計算方法 
✓射出瞳の内側の検出器の感度分布 
• 同様にZernike多項式 Zpq で展開 
!

!

❖開口能率 = spillover(入) X coupling X spillover(出) 
✓天体からの信号と検出器の感度分布の結合 
• AnmDpq と BnmDpq の和で書けると予想 
➡実際に収差の情報を持つ Anm, Bnm と感度の情報を
持つ Dpq で書き下すことに成功
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Equation (17) shows that the direction of an incident plane wave
and the position of the reference spherical wave center (i.e., de-
tector position) determine the coupling efficiency via the beam
pattern P̃n(l,m; rref). Finally, the aperture efficiency can be ex-
pressed as a function of p̂ and rref ,

ηA( p̂; rref) = ηsp,ex(rref)
λ2P̃n(l,m; rref)
Ap,enΩA(rref)

. (18)

In a case where P̃n = 1, i.e., p̂ = p̂0, Equation (18) reduces

ηA( p̂0; rref) = ηsp,ex(rref)
λ2

Ap,enΩA(rref)
. (19)

Note that ηsp,en = 1 because of assuming the incident wave
to be a plane wave. Equation (19) is different from the well-
known form ηA = λ2/Ap,enΩA described in much literature (e.g.,
Rohlfs & Wilson 2004, chap. 5), which is a special case where
ηsp,ex = 1 and P̃n(l,m; rref) = 1.

2.6.2. Evaluation at the exit pupil

We next expand the field reaching the exit pupil from the en-
trance pupil and the imaginary field by the detector sensitivity
with the normalized Zernike annular polynomials (Appendix A).
The reason we adopt the Zernike polynomials is that they are one
of the orthogonal polynomials in a finite and annular domain
and that it is more reasonable to utilize them than orthogonal
polynomials defined in an infinite domain such as the Laguerre-
Gaussian beams.

Differences of the fields at the exit pupil from the reference
spherical wave can be expanded as forms such as

Eex( p̂; ρ) = C exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

m,n

Cn
m( p̂; rref)Zn

m(ρ; ε), (20)

Edet(ρ; r0) = C′ exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

p,q

Dp
q(rref ; r0; w0)Zq

p(ρ; ε), (21)

Eex and Edet represent the field at the exit pupil by the incident
wave and detector sensitivity, respectively. C and C′ are a con-
stant. The detector sensitivity is assumed to be expand with the
Laguerre-Gaussian beams at a plane other than the exit pupil,
so that the coefficients Dp

q depends on the beam waist size of
the Laguerre-Gaussian beams, w0, the position of which can be
reflected by rref . By Equations (20) and (21), the coupling effi-
ciency can be written as follows:

ηcoup =

∣∣∣∣
∑

m,n
∑

p,q δnpδmqCn
m( p̂; rref)

(
Dp

q(rref ; r0; w0)
)∗∣∣∣∣

2

∑
n,m |Cn

m( p̂; rref)|2
∑

p,q

∣∣∣Dp
q(rref ; r0; w0)

∣∣∣2
, (22)

where δnp is the Kronecker’s delta. Note that the coefficients Cn
m

hold information of the distorted wavefront by aberrations.

3. Relation between the aberration coefficients and
aperture efficiency

Calculation of the coefficients Cn
m and Dp

q is put into practice
and response of Equation (22) can be observed if the Seidel aber-
rations exist.

Table 1. The aberration coefficients.

A1
1( p̂; rref), B1

1( p̂; rref) tip, tilt, distortion
A2

0( p̂; rref) defocus, curvature of field
A2

2( p̂; rref), B2
2( p̂; rref) astigmatism

A3
1( p̂; rref), B3

1( p̂; rref) coma
A4

0( p̂; rref) spherical

3.1. Calculation of the coefficients Cn
m( p̂; rref)

Our aim in this subsection is that the wavefront error W( p̂; ρ; rref)
is expanded with the Zernike annular polynomials corresponding
to the Seidel aberrations. In other words, we use the polynomials
Zn

m which meet n + m ≤ 4, n − |m| ≥ 0, and n − |m| is even and
obtain

W( p̂; ρ; rref) = A1
1( p̂; rref)Z1

1(ρ; ε) + B1
1( p̂; rref)Z1

−1(ρ; ε)

+ A2
0( p̂; rref)Z2

0(ρ; ε) + A2
2( p̂; rref)Z2

2(ρ; ε)

+ B2
2( p̂; rref)Z2

−2(ρ; ε) + A3
1( p̂; rref)Z3

1(ρ; ε)

+ B3
1( p̂; rref)Z3

−1(ρ; ε) + A4
0( p̂; rref)Z4

0(ρ; ε). (23)

The meanings of each coefficient An
m and Bn

m are summarized
in Table 1. The field at the exit pupil can be expressed with terms
up to the second order W2

Eex( p̂; ρ) ≃ Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
(
1 + jkW − k2

2
W2

)

=
Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

n,m

Cn
m( p̂; rref)Zn

m(ρ; rref). (24)

The coefficients Cn
m as a function of An

m and Bn
m are shown in

Appendix B.

3.2. Calculation of the coefficients Dp
q(rref ; r0; w0)

The field distribution of the detector sensitivity is ideally ex-
pected to be a fundamental Gaussian beam. We expand with the
Zernike annular polynomials the distribution given as a superpo-
sition of the Laguerre-Gaussian beams in this subsection.

Before calculating the coefficients Dp
q, we have a brief look

at the propagation of beams. The incident wave from the direc-
tion p̂ is converted into a nearly spherical wave centered at rref .
It is assumed that the position of the beam waist r0 is on the line
connecting the center of the exit pupil and the point rref , along
which the Laguerre-Gaussian beams propagate. On this assump-
tion, the term exp[ jk( f /zref)Rp,exρ sinΘ cos(ψ − Φ)] can be ig-
nored. It means that the case we should consider is the on-axis
case only, i.e., the incident wave comes from the normal to the
pupil and the beam waist is located on the z axis. It is hereafter
assumed that r0 ∝ rref and that the beam waist is located at the
point r0 = (0, 0, z0) with the beam size of w0.

3.2.1. Expansion of the Laguerre-Gaussian beam with the
Zernike polynomials

Each mode of the Laguerre-Gaussian beams specified by the in-
dex p′ and q′ can be expanded by the Zernike polynomials within
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Equation (17) shows that the direction of an incident plane wave
and the position of the reference spherical wave center (i.e., de-
tector position) determine the coupling efficiency via the beam
pattern P̃n(l,m; rref). Finally, the aperture efficiency can be ex-
pressed as a function of p̂ and rref ,

ηA( p̂; rref) = ηsp,ex(rref)
λ2P̃n(l,m; rref)
Ap,enΩA(rref)

. (18)

In a case where P̃n = 1, i.e., p̂ = p̂0, Equation (18) reduces

ηA( p̂0; rref) = ηsp,ex(rref)
λ2

Ap,enΩA(rref)
. (19)

Note that ηsp,en = 1 because of assuming the incident wave
to be a plane wave. Equation (19) is different from the well-
known form ηA = λ2/Ap,enΩA described in much literature (e.g.,
Rohlfs & Wilson 2004, chap. 5), which is a special case where
ηsp,ex = 1 and P̃n(l,m; rref) = 1.

2.6.2. Evaluation at the exit pupil

We next expand the field reaching the exit pupil from the en-
trance pupil and the imaginary field by the detector sensitivity
with the normalized Zernike annular polynomials (Appendix A).
The reason we adopt the Zernike polynomials is that they are one
of the orthogonal polynomials in a finite and annular domain
and that it is more reasonable to utilize them than orthogonal
polynomials defined in an infinite domain such as the Laguerre-
Gaussian beams.

Differences of the fields at the exit pupil from the reference
spherical wave can be expanded as forms such as

Eex( p̂; ρ) = C exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

m,n

Cn
m( p̂; rref)Zn

m(ρ; ε), (20)

Edet(ρ; r0) = C′ exp
⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

p,q

Dp
q(rref ; r0; w0)Zq

p(ρ; ε), (21)

Eex and Edet represent the field at the exit pupil by the incident
wave and detector sensitivity, respectively. C and C′ are a con-
stant. The detector sensitivity is assumed to be expand with the
Laguerre-Gaussian beams at a plane other than the exit pupil,
so that the coefficients Dp

q depends on the beam waist size of
the Laguerre-Gaussian beams, w0, the position of which can be
reflected by rref . By Equations (20) and (21), the coupling effi-
ciency can be written as follows:

ηcoup =

∣∣∣∣
∑

m,n
∑

p,q δnpδmqCn
m( p̂; rref)

(
Dp

q(rref ; r0; w0)
)∗∣∣∣∣

2

∑
n,m |Cn

m( p̂; rref)|2
∑

p,q

∣∣∣Dp
q(rref ; r0; w0)

∣∣∣2
, (22)

where δnp is the Kronecker’s delta. Note that the coefficients Cn
m

hold information of the distorted wavefront by aberrations.

3. Relation between the aberration coefficients and
aperture efficiency

Calculation of the coefficients Cn
m and Dp

q is put into practice
and response of Equation (22) can be observed if the Seidel aber-
rations exist.

Table 1. The aberration coefficients.

A1
1( p̂; rref), B1

1( p̂; rref) tip, tilt, distortion
A2

0( p̂; rref) defocus, curvature of field
A2

2( p̂; rref), B2
2( p̂; rref) astigmatism

A3
1( p̂; rref), B3

1( p̂; rref) coma
A4

0( p̂; rref) spherical

3.1. Calculation of the coefficients Cn
m( p̂; rref)

Our aim in this subsection is that the wavefront error W( p̂; ρ; rref)
is expanded with the Zernike annular polynomials corresponding
to the Seidel aberrations. In other words, we use the polynomials
Zn

m which meet n + m ≤ 4, n − |m| ≥ 0, and n − |m| is even and
obtain

W( p̂; ρ; rref) = A1
1( p̂; rref)Z1

1(ρ; ε) + B1
1( p̂; rref)Z1

−1(ρ; ε)

+ A2
0( p̂; rref)Z2

0(ρ; ε) + A2
2( p̂; rref)Z2

2(ρ; ε)

+ B2
2( p̂; rref)Z2

−2(ρ; ε) + A3
1( p̂; rref)Z3

1(ρ; ε)

+ B3
1( p̂; rref)Z3

−1(ρ; ε) + A4
0( p̂; rref)Z4

0(ρ; ε). (23)

The meanings of each coefficient An
m and Bn

m are summarized
in Table 1. The field at the exit pupil can be expressed with terms
up to the second order W2

Eex( p̂; ρ) ≃ Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
(
1 + jkW − k2

2
W2

)

=
Rp,en

Rp,ex
exp

⎡
⎢⎢⎢⎢⎣ jk

f
zref

Rp,exρ sinΘ cos(ψ − Φ) + j
kRp,ex

2

2zref
ρ2

⎤
⎥⎥⎥⎥⎦

×
∑

n,m

Cn
m( p̂; rref)Zn

m(ρ; rref). (24)

The coefficients Cn
m as a function of An

m and Bn
m are shown in

Appendix B.

3.2. Calculation of the coefficients Dp
q(rref ; r0; w0)

The field distribution of the detector sensitivity is ideally ex-
pected to be a fundamental Gaussian beam. We expand with the
Zernike annular polynomials the distribution given as a superpo-
sition of the Laguerre-Gaussian beams in this subsection.

Before calculating the coefficients Dp
q, we have a brief look

at the propagation of beams. The incident wave from the direc-
tion p̂ is converted into a nearly spherical wave centered at rref .
It is assumed that the position of the beam waist r0 is on the line
connecting the center of the exit pupil and the point rref , along
which the Laguerre-Gaussian beams propagate. On this assump-
tion, the term exp[ jk( f /zref)Rp,exρ sinΘ cos(ψ − Φ)] can be ig-
nored. It means that the case we should consider is the on-axis
case only, i.e., the incident wave comes from the normal to the
pupil and the beam waist is located on the z axis. It is hereafter
assumed that r0 ∝ rref and that the beam waist is located at the
point r0 = (0, 0, z0) with the beam size of w0.

3.2.1. Expansion of the Laguerre-Gaussian beam with the
Zernike polynomials

Each mode of the Laguerre-Gaussian beams specified by the in-
dex p′ and q′ can be expanded by the Zernike polynomials within
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3.3. Response of the aperture efficiency

We observe the response of Equation (22) as a function of the
parameter T . The detector sensitivity is assumed to be a funda-
mental Gaussian beam.

3.3.1. Without aberrations

The case in which there are no aberrations, i.e., C0
0 = 1 and

Cn
m = 0 for other n and m, is considered. Equation (22) reduces

ηcoup =

∣∣∣∣C0
0
(
D0

0
)∗∣∣∣∣

2

∑
n,m |Cn

m|2 ∑
p,q

∣∣∣Dp
q
∣∣∣2

(35)

By using D0
0 = R̃0

0

ηcoup =
1

∑
n,m |Cn

m|2 ∑
p,q

∣∣∣Dp
q
∣∣∣2

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]2 . (36)

The summation of |Cn
m|2 and |Dp

q|2 means all the power passing
through the pupil from an object and detector, respectively, and
therefore, we find the relation

∑

n,m

|Cn
m|2 = 1 (37)

∑

p,q

∣∣∣Dp
q
∣∣∣2 =

1
π[1,−1]

∫ 2π

0

∫ 1

ε
ρdρ exp(−2Tρ2)

=
exp(−2Tε2) − exp(−2T )

2T [1,−1]
. (38)

The spillover efficiency can be calculated by the definitions (6)
and (8)

ηsp,en = 1 (39)

ηsp,ex = exp(−2Tε2) − exp(−2T ) (40)

Then, we obtain

ηcoup =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1] [exp(−2Tε2) − exp(−2T )]
, (41)

ηA =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]
. (42)

When ε = 0 and R(0) = zref , the aperture efficiency can be ex-
pressed simply

ηA =
2
[
1 − exp(−T )

]2

T
. (43)

3.3.2. With aberrations

If the system composed of axial symmetrical elements we can
assume B1

1 = 0, A2
2 = 0, and B3

1 = 0. It is also assumed for
simplicity that ε = 0, R(0) = zref , and a fundamental Gaussian
mode for the detector sensitivity. As a result, the coefficients Cn

0

and Dp
0 are calculated.

C0
0 = 1 − k2

2

[(
A1

1
)2
+

(
A2

0
)2
+

(
B2

2
)2
+

(
A3

1
)2
+

(
A4

0
)2
]
,

C2
0 = jkA2

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A1

1
)2

√
3
+

2
√

2A1
1A3

1

√
3

+
4A2

0A4
0

√
5

+

√
3
(
B2

2
)2

2
+

(
A3

1
)2

5
√

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C4
0 = jkA4

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
√

2A1
1A3

1

√
5

+
2
(
A2

0
)2

√
5
+

(
B2

2
)2

2
√

5

+

(
A3

1
)2

√
5
+

2
√

5
(
A4

0
)2

7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C6
0 = − k2

10
√

7

[
6
√

15A2
0A4

0 + 9
(
A3

1
)2
]
,

C8
0 = −3k2

7

(
A4

0
)2
,

D0
0 =

1 − exp(−T )
T

,

D2
0 =

√
3

T 2
[
2 − T − (2 + T ) exp(−T )

]
,

D4
0 =

√
5

T 3

[
12 − 6T + T 2 − (12 + 6T + T 2) exp(−T )

]
,

D6
0 =

√
7

T 4

[
120 − 60T + 12T 2 − T 3

−(120 + 60T + 12T 2 + T 3) exp(−T )
]
,

D8
0 =

3
T 5

[
1680 − 840T + 180T 2 − 20T 3 + T 4

−(1680 + 840T + 180T 2 + 20T 3 + T 4) exp(−T )
]
.

Using the coefficients Cn
0 and Dp

0 we acquire the aperture effi-
ciency affected by the Seidel aberrations

ηA = 2T
∣∣∣∣D0

0 + jk
(
A2

0D2
0 + A4

0D4
0
)

− k2

2

[(
D0

0 +
D2

0

√
3

) (
A1

1
)2
+ 2
√

2
(

D2
0

√
3
+

D4
0

√
5

)
A1

1A3
1

+

(
D0

0 +
D2

0

5
√

3
+

D4
0

√
5
+

9D6
0

5
√

7

) (
A3

1
)2
+

(
D0

0 +
2D4

0

√
5

) (
A2

0
)2

+

⎛
⎜⎜⎜⎜⎝

4D2
0

√
5
+

6
√

15D6
0

5
√

7

⎞
⎟⎟⎟⎟⎠ A2

0A4
0 +

⎛
⎜⎜⎜⎜⎝D0

0 +
2
√

5D4
0

7
+

6D8
0

7

⎞
⎟⎟⎟⎟⎠
(
A4

0
)2

+

⎛
⎜⎜⎜⎜⎝D0

0 +

√
3D2

0

2
+

D4
0

2
√

5

⎞
⎟⎟⎟⎟⎠
(
B2

2
)2
⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣

2

(44)

Note that the aberration coefficients A1
1 and A2

0 correspond
to the tip-tilt and defocus, respectively, and therefore, they are
strongly dependent on the position of the beam waist r0 or rref .
Let us focus on the first order W. If the beam waist is set at the
position which holds

A2
0( p̂; rref) = −

D4
0(T )

D2
0(T )

A4
0( p̂; rref), (45)
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3.3. Response of the aperture efficiency

We observe the response of Equation (22) as a function of the
parameter T . The detector sensitivity is assumed to be a funda-
mental Gaussian beam.

3.3.1. Without aberrations

The case in which there are no aberrations, i.e., C0
0 = 1 and

Cn
m = 0 for other n and m, is considered. Equation (22) reduces

ηcoup =

∣∣∣∣C0
0
(
D0

0
)∗∣∣∣∣

2

∑
n,m |Cn

m|2 ∑
p,q

∣∣∣Dp
q
∣∣∣2

(34)

By using D0
0 = R̃0

0

ηcoup =
1

∑
p,q

∣∣∣Dp
q
∣∣∣2

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]2 . (35)

The summation of |Dp
q|2 means all the power passing through

the pupil from a detector, and therefore, we find the relation

∑

p,q

∣∣∣Dp
q
∣∣∣2 =

1
π[1,−1]

∫ 2π

0

∫ 1

ε
ρdρ exp(−2Tρ2)

=
exp(−2Tε2) − exp(−2T )

2T [1,−1]
. (36)

The spillover efficiency can be calculated by the definitions (6)
and (8)

ηsp,en = 1 (37)

ηsp,ex = exp(−2Tε2) − exp(−2T ) (38)

Then, we obtain

ηcoup =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1] [exp(−2Tε2) − exp(−2T )]
, (39)

ηA =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]
. (40)

When ε = 0 and R(0) = zref , the aperture efficiency can be ex-
pressed simply

ηA =
2
[
1 − exp(α)

]2

T
. (41)

3.3.2. With aberrations

If the system composed of axial symmetrical elements we can
assume B1

1 = 0, A2
2 = 0, and B3

1 = 0. It is also assumed for
simplicity that ε = 0, R(0) = zref , and a fundamental Gaussian
mode for the detector sensitivity. As a result, the coefficients Cn

0

and Dp
0 are calculated.

C0
0 = 1 − k2

2

[(
A1

1
)2
+

(
A2

0
)2
+

(
B2

2
)2
+

(
A3

1
)2
+

(
A4

0
)2
]
,

C2
0 = jkA2

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A1

1
)2

√
3
+

2
√

2A1
1A3

1

√
3

+
4A2

0A4
0

√
5

+

√
3
(
B2

2
)2

2
+

(
A3

1
)2

5
√

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C4
0 = jkA4

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
√

2A1
1A3

1

√
5

+
2
(
A2

0
)2

√
5
+

(
B2

2
)2

2
√

5

+

(
A3

1
)2

√
5
+

2
√

5
(
A4

0
)2

7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C6
0 = − k2

10
√

7

[
6
√

15A2
0A4

0 + 9
(
A3

1
)2
]
,

C8
0 = −3k2

7

(
A4

0
)2
,

D0
0 =

1 − exp(−T )
T

,

D2
0 =

√
3

T 2
[
2 − T − (2 + T ) exp(−T )

]
,

D4
0 =

√
5

T 3

[
12 − 6T + T 2 − (12 + 6T + T 2) exp(−T )

]
,

D6
0 =

√
7

T 4

[
120 − 60T + 12T 2 − T 3

−(120 + 60T + 12T 2 + T 3) exp(−T )
]
,

D8
0 =

3
T 5

[
1680 − 840T + 180T 2 − 20T 3 + T 4

−(1680 + 840T + 180T 2 + 20T 3 + T 4) exp(−T )
]
.

Using the coefficients Cn
0 and Dp

0 we acquire the aperture effi-
ciency affected by the Seidel aberrations

ηA = 2T
∣∣∣∣D0

0 + jk
(
A2

0D2
0 + A4

0D4
0
)

− k2

2

[(
D0

0 +
D2

0

√
3

) (
A1

1
)2
+ 2
√

2
(

D2
0

√
3
+

D4
0

√
5

)
A1

1A3
1

+

(
D0

0 +
D2

0

5
√

3
+

D4
0

√
5
+

9D6
0

5
√

7

) (
A3

1
)2
+

(
D0

0 +
2D4

0

√
5

) (
A2

0
)2

+

⎛
⎜⎜⎜⎜⎝

4D2
0

√
5
+

6
√

15D6
0

5
√

7

⎞
⎟⎟⎟⎟⎠ A2

0A4
0 +

⎛
⎜⎜⎜⎜⎝D0

0 +
2
√

5D4
0

7
+

6D8
0

7

⎞
⎟⎟⎟⎟⎠
(
A4

0
)2

+

⎛
⎜⎜⎜⎜⎝D0

0 +

√
3D2

0

2
+

D4
0

2
√

5

⎞
⎟⎟⎟⎟⎠
(
B2

2
)2
⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣

2

(42)

Note A1
1 and A2

0 correspond to tip-tilt and defocus, respectively,
and therefore, they are strongly dependent on the position of the
beam waist r0 or rref . Let us focus on the first order W. If the
beam waist is set at the position which holds

A2
0( p̂; rref) = −

D4
0(T )

D2
0(T )

A4
0( p̂; rref), (43)

Article number, page 6 of 13

H. Imada and M. Nagai : An analytical expression of the aperture efficiency affected by the Seidel aberrations

then the first order term will vanish. Equation (43) represents
a condition to reduce effects of the spherical aberration. In the
same way, the second order W will be a minimum as a function
of A1

1 when the position of the beam waist holds

A1
1( p̂; rref) = −

√
10D2

0(T ) +
√

6D4
0(T )√

15D0
0(T ) +

√
5D2

0(T )
A3

1( p̂; rref). (44)

Equation (43) represents a condition to reduce effects of the
coma. Substituting Equations (43) and (44) into Equation (42),
we obtain

ηA = 2T
∣∣∣∣∣∣D0

0 − 2π2
{(

D0
0 +

D2
0

5
√

3
+

D4
0

√
5
+

9D6
0

5
√

7

− 2
5
√

3
(
√

5D2
0 +
√

3D4
0)2

√
3D0

0 + D2
0

⎞
⎟⎟⎟⎟⎠
(

A3
1

λ

)2

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝1 +

(
D4

0
)2

(
D2

0
)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ D0

0 − 2
7
√

5

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝9 − 7

(
D4

0
)2

(
D2

0
)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ D4

0

−6
√

15D4
0

5
√

7D2
0

D6
0 +

6
7

D8
0
⎤
⎥⎥⎥⎥⎦
(

A4
0

λ

)2

+

⎛
⎜⎜⎜⎜⎝D0

0 +

√
3D2

0

2
+

D4
0

2
√

5

⎞
⎟⎟⎟⎟⎠
(

B2
2

λ

)2⎫⎪⎪⎬
⎪⎪⎭

∣∣∣∣∣∣∣

2

. (45)

Note that the conditions (43) and (44) does not necessarily max-
imize the aperture efficiency. If an asymmetric sensitivity is
adopted, e.g., a diagonal horn, conditions to reduce effects of
aberrations including the astigmatism.

4. Verification

Equation (42) and the conditions (43) and (44) are veri-
fied with numerical simulations in this section. We compare
the results of Ray tracing Radiant Zemax (2014) and PO
TICRA Engineering Consultants (2003).

4.1. Model and calculation

We use a simple system composed of a spherical mirror with
a circular aperture ε = 0 (Figure 3, Table 2). The wavelength
is 200 µm. The incident angle to the entrance pupil is p̂ =
(0 deg., 0 deg.) and p̂ = (1 deg., 0 deg.). Three cases in terms
of the center of the reference spherical wave rref are prepared for
each incident angle. rref is located at the point where

1. Equations (42) and (43) hold when the edge taper is 15 dB,
2. the Strehl ratio without apodization is maximized,
3. the Gaussian image point is.

The aberration coefficients An
m and Bn

m are derived from
ray tracing. The edge taper is estimated by PO. The aperture
efficiency as a function of the aberration coefficients and edge
taper is calculated with Equation (42). The Strehl ratio is also
calculated by Mahajan (1983) with the aberration coefficients.

S ( p̂; rref) ≃ exp
[
−k2Wdev

2( p̂; rref)
]

= exp

⎧⎪⎪⎨
⎪⎪⎩−k2

∑

m≥0

∑

n>0

[
(An

m( p̂; rref))2 + (Bn
m( p̂; rref))2

]
⎫⎪⎪⎬
⎪⎪⎭ .

(46)

Table 2. Parameters of the mirror.

Radius of curvature −1000 mm
Conic constant 0.0

Diameter 300 mm

r

z

Fig. 3. Layout of the model.

Table 4. Position of beam waist, spillover, and beam solid angle for
p̂ = (0 deg., 0 deg.).

case (r0, z0)/mm ηsp,ex ΩA/sr
1 (0,−497.329) 0.7158 6.349 × 10−7

(0,−497.328) 0.9079 6.873 × 10−7

(0,−497.327) 0.9701 7.679 × 10−7

(0,−497.324) 0.9903 8.728 × 10−7

2 (0,−497.168) 0.7158 6.365 × 10−7

(0,−497.167) 0.9079 6.927 × 10−7

(0,−497.166) 0.9701 7.773 × 10−7

(0,−497.163) 0.9903 8.865 × 10−7

3 (0,−500.000) 0.7156 1.968 × 10−6

(0,−499.999) 0.9078 1.705 × 10−6

(0,−499.997) 0.9701 1.564 × 10−6

(0,−499.995) 0.9903 1.506 × 10−6

Note that the Strehl ratio with apodization can be used as seen
in Olmi & Bolli (2007) but we need pure geometrical features in
this paper. Therefore, the Strehl ratio means what is defined in
Equation (46) when we mention “Strehl ratio”.

In the PO simulations, a fundamental Gaussian beam prop-
agating along the vector rref is used. The size and position of
the beam waist are determined so that R(0) =

√
rref2 + zref2. The

edge taper is set about 5, 10, 15, and 20 dB. The specific values
of the edge taper are derived from the PO. The beam solid an-
gle and spillover efficiency are also derived from PO. Then, the
aperture efficiency is calculated with Equation (19).

4.2. The Case: p̂ = (0 deg., 0 deg.)

We tabulate the coordinates rref , the aberration coefficients cal-
culated by ray tracing, and the Strehl ratio in Table 3. The po-
sitions of the beam waist, spillover efficiencies, and beam solid
angles are shown in Table 4, which are calculated by PO except
for the positions. The aperture efficiencies estimated by Equation
(42) ηA,an completely agree with that calculated by Equation (19)
ηA,PO with PO for higher Strehl ratios (Table 5). Figure 4 shows
theoretical curves as a function of the edge taper T with Equation
(42) and points obtained with PO.

4.3. The Case: p̂ = (1 deg., 0 deg.)

As shown in Subsection 4.2, We tabulate the coordinates rref , the
aberration coefficients calculated by ray tracing, and the Strehl
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3.3. Response of the aperture efficiency

We observe the response of Equation (22) as a function of the
parameter T . The detector sensitivity is assumed to be a funda-
mental Gaussian beam.

3.3.1. Without aberrations

The case in which there are no aberrations, i.e., C0
0 = 1 and

Cn
m = 0 for other n and m, is considered. Equation (22) reduces

ηcoup =

∣∣∣∣C0
0
(
D0

0
)∗∣∣∣∣

2

∑
n,m |Cn

m|2 ∑
p,q

∣∣∣Dp
q
∣∣∣2

(35)

By using D0
0 = R̃0

0

ηcoup =
1

∑
n,m |Cn

m|2 ∑
p,q

∣∣∣Dp
q
∣∣∣2

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]2 . (36)

The summation of |Cn
m|2 and |Dp

q|2 means all the power passing
through the pupil from an object and detector, respectively, and
therefore, we find the relation

∑

n,m

|Cn
m|2 = 1 (37)

∑

p,q

∣∣∣Dp
q
∣∣∣2 =

1
π[1,−1]

∫ 2π

0

∫ 1

ε
ρdρ exp(−2Tρ2)

=
exp(−2Tε2) − exp(−2T )

2T [1,−1]
. (38)

The spillover efficiency can be calculated by the definitions (6)
and (8)

ηsp,en = 1 (39)

ηsp,ex = exp(−2Tε2) − exp(−2T ) (40)

Then, we obtain

ηcoup =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1] [exp(−2Tε2) − exp(−2T )]
, (41)

ηA =
2T

∣∣∣exp(αε2) − exp(α)
∣∣∣2

|α|2 [1,−1]
. (42)

When ε = 0 and R(0) = zref , the aperture efficiency can be ex-
pressed simply

ηA =
2
[
1 − exp(−T )

]2

T
. (43)

3.3.2. With aberrations

If the system composed of axial symmetrical elements we can
assume B1

1 = 0, A2
2 = 0, and B3

1 = 0. It is also assumed for
simplicity that ε = 0, R(0) = zref , and a fundamental Gaussian
mode for the detector sensitivity. As a result, the coefficients Cn

0

and Dp
0 are calculated.

C0
0 = 1 − k2

2

[(
A1

1
)2
+

(
A2

0
)2
+

(
B2

2
)2
+

(
A3

1
)2
+

(
A4

0
)2
]
,

C2
0 = jkA2

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
A1

1
)2

√
3
+

2
√

2A1
1A3

1

√
3

+
4A2

0A4
0

√
5

+

√
3
(
B2

2
)2

2
+

(
A3

1
)2

5
√

3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C4
0 = jkA4

0 − k2

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣
2
√

2A1
1A3

1

√
5

+
2
(
A2

0
)2

√
5
+

(
B2

2
)2

2
√

5

+

(
A3

1
)2

√
5
+

2
√

5
(
A4

0
)2

7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ,

C6
0 = − k2

10
√

7

[
6
√

15A2
0A4

0 + 9
(
A3

1
)2
]
,

C8
0 = −3k2

7

(
A4

0
)2
,

D0
0 =

1 − exp(−T )
T

,

D2
0 =

√
3

T 2
[
2 − T − (2 + T ) exp(−T )

]
,

D4
0 =

√
5

T 3

[
12 − 6T + T 2 − (12 + 6T + T 2) exp(−T )

]
,

D6
0 =

√
7

T 4

[
120 − 60T + 12T 2 − T 3

−(120 + 60T + 12T 2 + T 3) exp(−T )
]
,

D8
0 =

3
T 5

[
1680 − 840T + 180T 2 − 20T 3 + T 4

−(1680 + 840T + 180T 2 + 20T 3 + T 4) exp(−T )
]
.

Using the coefficients Cn
0 and Dp

0 we acquire the aperture effi-
ciency affected by the Seidel aberrations

ηA = 2T
∣∣∣∣D0

0 + jk
(
A2

0D2
0 + A4

0D4
0
)

− k2

2

[(
D0

0 +
D2

0

√
3

) (
A1

1
)2
+ 2
√

2
(

D2
0

√
3
+

D4
0

√
5

)
A1

1A3
1

+

(
D0

0 +
D2

0

5
√

3
+

D4
0

√
5
+

9D6
0

5
√

7

) (
A3

1
)2
+

(
D0

0 +
2D4

0

√
5

) (
A2

0
)2

+

⎛
⎜⎜⎜⎜⎝

4D2
0

√
5
+

6
√

15D6
0

5
√

7

⎞
⎟⎟⎟⎟⎠ A2

0A4
0 +

⎛
⎜⎜⎜⎜⎝D0

0 +
2
√

5D4
0

7
+

6D8
0

7

⎞
⎟⎟⎟⎟⎠
(
A4

0
)2

+

⎛
⎜⎜⎜⎜⎝D0

0 +

√
3D2

0

2
+

D4
0

2
√

5

⎞
⎟⎟⎟⎟⎠
(
B2

2
)2
⎤
⎥⎥⎥⎥⎦

∣∣∣∣∣∣

2

(44)

Note that the aberration coefficients A1
1 and A2

0 correspond
to the tip-tilt and defocus, respectively, and therefore, they are
strongly dependent on the position of the beam waist r0 or rref .
Let us focus on the first order W. If the beam waist is set at the
position which holds

A2
0( p̂; rref) = −

D4
0(T )

D2
0(T )

A4
0( p̂; rref), (45)
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コマ収 
差低減

球面収差相殺

→検出器の移動量

→検出器の移動量

５. 開口能率の計算



❖数値的な検証 
✓球面鏡 1 枚の系 

❖結果 
✓赤: 収差なし 
✓緑: 視野中心 (球面収差) 
✓青: 斜め入射 1°　　　　　　　　　　　　　　　　　　
(球面、コマ、非点収差)
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５. 開口能率の計算

ストレール比 > 0.85 程度



6. 応用
❖光線追跡を最大限に活用できる！！！ 
✓設計時 
• 光学系の最適化 (ホーンありき) 
• 検出器の感度分布の最適化 (光学系ありき) 
✓性能評価 
• ビームパターン (またはPSF) の予測 
✓公差解析 
• 何万通りもの光学素子の変位を短時間に全て評価でき
る 

✓その他 
• ホログラフィなどの結果の予測

14



まとめ
❖開口能率 
✓2つのspilloverとcouplingから成る 
✓couplingは天体からの電場と検出器感度の関数 
✓瞳で計算すべき量 

❖特に射出瞳で計算した場合 
✓光線追跡で得られる波面の展開係数を使える 
• Zernike多項式 
✓検出器の感度分布もZernikeで展開 

➡解析的な表示が可能になった 
• 収差が小さければ、高精度 

❖様々な応用ができる計算方法
15
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