収差と開口能率の解析的な関係と その応用

永井 誠，今田 大皓（筑波大学）

第16回 ミリ波サブミリ波受信機ワークショップ 2016年3月8日

1．収差を考える必要性

\＆近年の宇宙電波観測の計画•提案
\checkmark 観測波長
－より短い波長へ（200 um 程度まで）
\checkmark 掃天観測が中心
－南極 10 m 望遠鏡（筑波大）
－Cerro Chajnantor Atacama Telescope
（Cornell Univ．など）
－Large Submillimeter
Telescope（国立天文台など）
\checkmark 視野 ${ }^{\circ}$ ないしはそれ以上が要求されている

南極 10 m 望遠鏡

2．電波望遠鏡の特徵と指標

\＆望遠鏡の役割
，天体からの電波を集める
\checkmark 検出器まで導く
\checkmark 検出する
\＆光学的な特徴
，波動性がみえる

Tsuzuki＋，JATIS，1（2）， 025002 （2015）
－回折（周波数の関数）を評価する必要がある
\checkmark 検出器に感度の方向依存性がある
－特定の方向の電磁波を検出する
開口能率
\checkmark 天体からの電場と検出器の感度の関数

3．開口能率を振り返る

＊開口能率の本質は何か？
\checkmark 入射側のspillover
\checkmark 天体からの電場と検出器感度の一致具合
－coupling
\checkmark 受信機側のspillover
\＆値を評価する場所
\checkmark 入射瞳と射出瞳
＊瞳？
V 光学系の性質を決める重要な場所

4．瞳

＊重要な概念•••瞳 \checkmark 絞りの像と定義される

4．瞳

＊重要な概念•••瞳
\checkmark 絞りの像と定義される

- 物体側から見た瞳（入口）••入射瞳
- 像側から見た瞳（出口）•••射出瞳

4．瞳

＊重要な概念•••瞳
•絞りの像と定義される

- 物体側から見た瞳（入口）•••入射瞳
- 像側から見た瞳（出口）•••射出瞳
\Rightarrow 通過する光線（電磁波）を規定する

4．瞳

＊入射瞳の前，射出瞳の後ろ
V自由空間の伝搬として扱う
》入射瞳と射出瞳の間
•屈折／反射が起こる，収差が発生する

5．開口能率の計算

＊計算方法（今田D論，Imada \＆Nagai in prep．）
\checkmark 信号に乗った波面の歪みの記述＠射出瞳

\checkmark Zernike（環状）多項式 $Z_{n} m$ で展開
－単位円内で定義される正規直交多項式

$$
\begin{aligned}
& W\left(\hat{\boldsymbol{p}} ; \boldsymbol{\rho} ; \boldsymbol{r}_{\mathrm{ref}}\right)=A_{1}{ }^{1}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{1}{ }^{1}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon})+B_{1}{ }^{1}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{1}{ }^{-1}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon}) \\
& \text { 結像位置の }+A_{2}{ }^{0}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{2}{ }^{0}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon})+A_{2}{ }^{2}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{2}{ }^{2}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon}) \\
& \text { 前後のずれ }+B_{2}{ }^{2}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{2}{ }^{-2}(\boldsymbol{\rho} ; \varepsilon)+A_{3}{ }^{1}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{3}{ }^{1}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon}) \\
&+B_{3}{ }^{1}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{3}{ }^{-1}(\boldsymbol{\rho} ; \varepsilon)+A_{4}{ }^{0}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right) Z_{4}{ }^{0}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon})
\end{aligned}
$$

結像位置の焦点
面内のずれ
非点収差

球面収差

5．開口能率の計算

計算方法

\checkmark 射出瞳の內側の検出器の感度分布
－同様にZernike多項式 $Z_{p} q$ で展開

$$
E_{\operatorname{det}}\left(\boldsymbol{\rho} ; \boldsymbol{r}_{0}\right)=\sum_{p, q} D_{p}{ }^{q}\left(\boldsymbol{r}_{\mathrm{ref}} ; \boldsymbol{r}_{0} ; w_{0}\right) Z_{q}{ }^{p}(\boldsymbol{\rho} ; \boldsymbol{\varepsilon})
$$

射出瞳上の感度分布
＊開口能率 $=$ spillover（入）X coupling X spillover（出）
\checkmark 天体からの信号と検出器の感度分布の結合
－$A_{n} m D_{p} q$ と $B_{n} m D_{p} q$ の和で書けると予想
\rightarrow 実際に収差の情報を持つ $A_{n}{ }^{m}, B_{n}{ }^{m}$ と感度の情報を持つ D_{p} q で書き下すことに成功

5．開口能率の計算

＊感度分布が軸対称の場合

$$
\begin{align*}
& \text { 開口能率 } \eta_{\mathrm{A}}=2 T \mid D_{0}{ }^{0}+j k\left(A_{2}{ }^{0} D_{2}{ }^{0}+A_{4}{ }^{0} D_{4}{ }^{0}\right) \\
& \text { 従来 }-\frac{k^{2}}{2}\left[\left(D_{0}{ }^{0}+\frac{D_{2}{ }^{0}}{\sqrt{3}}\right)\left(A_{1}{ }^{1}\right)^{2}+2 \sqrt{2}\left(\frac{D_{2}{ }^{0}}{\sqrt{3}}+\frac{D_{4}{ }^{0}}{\sqrt{5}}\right) A_{1}{ }^{1} A_{3}{ }^{1}{ }^{1}\right. \\
& +\left(D_{0}{ }^{0}+\frac{D_{2}{ }^{0}}{5 \sqrt{3}}+\frac{D_{4}{ }^{0}}{\sqrt{5}}+\frac{9 D_{6}{ }^{0}}{5 \sqrt{7}}\right)\left(A_{3}{ }^{1}\right)^{2}+\left(D_{0}{ }^{0}+\frac{2 D_{4}{ }^{0}}{\sqrt{5}}\right)\left(A_{2}{ }^{0}\right)^{2} \\
& +\left(\frac{4 D_{2}{ }^{0}}{\sqrt{5}}+\frac{6 \sqrt{15} D_{6}{ }^{0}}{5 \sqrt{7}}\right) A_{2}{ }^{0} A_{4}{ }^{0}+\left(D_{0}{ }^{0}+\frac{2 \sqrt{5} D_{4}{ }^{0}}{7}+\frac{6 D_{8}{ }^{0}}{7}\right)\left(A_{4}{ }^{0}\right)^{2} \\
& \left.+\left(D_{0}{ }^{0}+\frac{\sqrt{3} D_{2}{ }^{0}}{2}+\frac{D_{4}{ }^{0}}{2 \sqrt{5}}\right)\left(B_{2}{ }^{2}\right)^{2}\right]^{2} \tag{44}
\end{align*}
$$

天体からの
\checkmark Tは感度分布の広がりを表す
\checkmark kは波数
V従来使われていたのは 1 項目
－2項目以降が収差の影響

射出瞳上の電場の振幅

5．開口能率の計算

－収差打ち消しの条件

\checkmark 球面収差

－検出器位置の縦方向の移動で相殺
$A_{2}{ }^{0}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right)=-\frac{D_{4}{ }^{0}(T)}{D_{2}{ }^{0}(T)} A_{4}{ }^{0}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right)$ ，\rightarrow 検出器の移動量
，コマ収差
－検出器位置の横方向の移動で低減
$A_{1}{ }^{1}\left(\hat{p}, \boldsymbol{r}_{\mathrm{ref}}\right)=-\frac{\sqrt{10} D_{2}{ }^{0}(T)+\sqrt{6} D_{4}{ }^{0}(T)}{\sqrt{15} D_{0}{ }^{0}(T)+\sqrt{5} D_{2}{ }^{0}(T)} A_{3}{ }^{1}\left(\hat{\boldsymbol{p}} ; \boldsymbol{r}_{\mathrm{ref}}\right)$ ．\rightarrow 検出器の移動量
cf．幾何光学の打消し条件

数値計算で検証

\checkmark GRASP8

5．開口能率の計算

＊数值的な検証

\checkmark 球面鏡 1 枚の系

＊結果
\checkmark 赤：収差なし
\checkmark 緑：視野中心（球面収差）

\checkmark 青：斜め入射 1° （球面，コマ，非点収差）

6．応用

\＆光線追跡を最大限に活用できる！！！
\checkmark 設計時

- 光学系の最適化（ホーンありき）
- 検出器の感度分布の最適化（光学系ありき）
\checkmark 性能評価
－ビームパターン（またはPSF）の予測
\checkmark 公差解析
－何万通りもの光学素子の変位を短時間に全て評価でき る
\checkmark その他
－ホログラフィなどの結果の予測

まとめ

＊開口能率
\checkmark 2つのspilloverとcouplingから成る
\checkmark couplingは天体からの電場と検出器感度の関数
\checkmark 瞳で計算すべき量
＊特に射出瞳で計算した場合
\checkmark 光線追跡で得られる波面の展開係数を使える
－Zernike多項式
\checkmark 検出器の感度分布もZernikeで展開
\rightarrow 解析的な表示が可能になった
－収差が小さければ，高精度
»様々な応用ができる計算方法 今田 s133093＠u．tsukubaa．ac．jp まて

